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I. SUMIGmY 

The object ive of t h i s  invest igat ion is t o  study t h e  thermal behavior of 
-_"- 

p a r t i c l e  clouds during exposure t o  radiant energy and, by means of experimental 

measurements and theo re t i ca l  analyses,  t o  inves t iga te  methods f o r  descr ibing 

quan t i t a t ive ly  t h e  basic  process involved. 

w i l l  be  use fu l  i n  applied problems. 

It i s  an t ic ipa ted  t h a t  t h e  r e s u l t s  

LThe rad ian t  energy absorbed by p a r t i c l e  clouds w a s  measured while t h e  

clouds were flowing ins ide  a quartz tube through the  w a l l s  of which energy was 

being received from surrounding radiators .  7 The apparatus has prewiously been 

described i n  d e t a i l .  

repor t  period t o  character ize  t h e  radiat ion f i e l d  t o  which the p a r t i c l e  cloud 

system was exposed. 

by t h e  f lux  d i s t r ibu t ion  and t h e  t o t a l  amount of radiant  energy impinging on t h e  

aerosol  conduit. 

absolute  i n t e n s i t y  of t h e  f i e l d  was  not then r e l i a b l y  determined. 

experiments, t h e  t o t a l  amount of radiant energy impinging on the  aerosol  con- 

d u i t  was evaluated by calor imetr ic  measurements using water flowing through 

t h e  system with t h e  w a l l s  of t h e  conduit blackened t o  absorb a l l  incident  energy. 

The t o t a l  energy absorbed divided by the surface area of the  conduit gave t h e  

average f lux ;  it. w a s  found t o  be 21,500 Btu/hr f t  . 
more accurate  evaluation of t h e  eff ic iency of an absorbing cloud. 

Experiments were performed during the  first p a r t  of t h i s  

Neglecting spec t ra l  e f f ec t s ,  t he  f i e l d  may be described 

The flux d i s t r ibu t ion  was given i n  an earlier report ,  bu t  t h e  

In  recent 

2 This number now permits a 

c The energy absorbed by a cloud passing through the  radiant  f i e l d  w a s  

determined by two energy-balance procedures. 1 One w a s  made between t h e  reference 

conditions and t h e  thermal state of t h e  system a t  t h e  entrance of t h e  calorim- 

eter, and the  o the r  was made between the  conditions a t  t h e  reference point  and 

t h e  calorimeter e x i t .  The former involved a ca lcu la t ion  of t h e  enthalpy 

1 



increase of the aeros3l  systen: with only a i r  flowing and then w i t h  pa r t i c l e s  

present.  

p a r t i c l e s  and the radiant energy absorbed by them. 

involved the same proce3ure except a calculat ion f o r  the calorimeter coolant 

had t o  be taken in to  account a l so .  

The d i f fe rerxe  between these r e su l t s  gave the  net  e f f ec t  of t h e  

The second energy balance 

L Results were obtained f o r  aerosols of d i f f e ren t  s i z e  f r ac t ions  of ferrous 

su l f ide  and cupric 

approximately 100 microns. 

of rad ia t ion  was essen t i a l ly  a l i n e a r  function of concentration up t o  about 

50 per  cent by weight p a r t i c l e s  and tha t  the absorption increased w i t h  decreas- 

ing p a r t i c l e  s i ze .  The p a r t i c l e s  were described i n  terms of minimum, mean, and 

maximum dimensiocs. These charac te r i s t ic  measures were determined with the ex- 

pectat ion t h a t  they w i l l  be used i n  future  analyses. 

The pa r t i z l e  s i zes  of each ranged from 25 microns t o  

The heat  t ransfer  data showed that the absorption 

More recent e f f o r t s  have been directed toward evaluating from low teaper- 

a tu re  nitrogen adsorption techniqaes the surface propert ies  of t he  powders. 

Specif ical ly ,  t h e  standard BET method, as w e l l  as a modified form of it, were 

u t i l i z e d  t o  determine the  contribution of i n t e rna l  surface area t o  radiat ion 

absorption. It w a s  ant ic ipated t h a t  these t o t a l  surface areas  combined w i t h  

s t a t i s t i c a l  measurements of p a r t i c l e  dimensions would permit more complete 

understanding of how absorption occurred. 

b u t  it appears t h a t  external  s u r f m e  area may be t h e  s ign i f icant  parameter af ter  

a l l .  The problem is  s t i l l  being investigated.  

Results as ye t  are not conclusive, 

To help resolve questions about p a r t i c l e  surface area and the at tenuat ion 

o f  radiation, a mathematical node1 i s  being Teveloped from t h e  basic  equations 

of radiant heat t r ans fe r  t o  describe the  energy absorbed by a p a r t i c l e  cloud 

i n  a c i r c u l a r  cylinder.  The development is  being made i n  two s teps .  One is 

2 



t o  be v a l i d  when radiant  energy sca t te r ing  can be neglected and t h e  second is  

a modification t o  estimate these effects  as they become more pronounced. 

e f f o r t s  are being concentrated on t h i s  ana lys i s  a t  t h e  moment. 

Major 

3 



11. INTRODlTcTION 

.The thermal behavior of P a r t i c l e  clouds during exposure t o  a radiant  heat  

f i e l d  is being studied. 

basic  processes involved. 

t o  p r a c t i c a l  problems, especial ly  those i n  which aerosols  'within a cy l indr ica l  

enclosure are exposed t o  thermal radiation both f o r  purposes of protect ion and 

energy u t i l i z a t i o n .  This report  presents t he  experimental data col lected during 

t h e  four th  reporting period of the  project and describes the  processes cur ren t ly  

being examined f o r  analyzing the  resul ts .  

discussed. 

The ult imate  goal is  a quant i ta t ive  descr ipt ion of t h e  

It is ant ic ipated t h a t  the  results w i l l  be applied 

Data reduction methods a r e  a l so  

Fami l ia r i ty  with apparatus and procedures previously reported i s  presumed. 

4 



111. INVESTIGATIONS 

A. Radiant Heat Flux Determinations 

Basic t o  a l i  heat  t ransfer  calculations i n  t h i s  sti dy i s  the  radiant heat  

flux penetrat ing t h e  quartz enclosures and t ravers ing the  p a r t i c l e  cloud. To 

determine t h i s  quantity, experiments were conducted i n  which water w a s  forced 

t o  flow upward through the  quartz t o  remove t h e  heat  absorbed by t h e  system from 

t h e  radiant  f i e l d .  To assure  t o t a l  absorption of t h e  impinging radiat ion,  t he  

inner  surface of t h e  quartz conduit was coated with a th ick  s l u r r y  of graphi te  

suspended i n  a s 3 h t i o n  of plexiglass  i n  ethylene dichlor ide.  Upon evaporation 

of t h e  solvent,  a continuous f i l n i  of graphite suspended i n  plexiglass  w a s  pro- 

duced having a thickness of approximately 1 mm. 

0 With the  furnace a t  operating temperature (2160 F), a water flow rate of 

0.374 GPM was establ ished through the 0.5 inch diameter quartz conduit. The 

temperature of t he  w a t e r  w a s  determined both a t  the  entrance and the  e x i t  of 

t h e  conduit. 

picked up 54.6 Btu/min of ene&. 

t h a t  w a s  absorbed by the  quartz w a l l ,  which i n  t h i s  case w a s  5.0 Btu/min. 

Therefore, t h e  net energy reaching the conduit w a s  49.6 Btu/min and corresponded 

t o  a radiant  heat  flux a t  the  qaar tz  conduit w a l l  of 21,500 Btu/hr f t  . 
method of determining t h e  t o t a l  radiant heat  f l u x  is  considered more reliable than 

t h e  previous one using a themocouple probe consis t ing of an exposed and a 

The average of several  measurements indicated t h a t  the  water 

This number includes t h e  amount of energy 

2 This 

shielded thermocouple (1) . 

The calzulat ions f o r  t h e  previously described technique using a thermo- 

couple probe involved t h e  use of t h e  emissivi ty  of t he  exposed bead, which, 

A. McAlister, E. C. Ward, A. F. Hidalgo and C. O r r ,  Jr., Heat Transfer t n  (1) - - .-_ - - - - - 
a G a s  Containing a Cludd of Par t ic les ,  Semiannual Status  Report No. 3, 
Project  No. A-635, Engineering Ekperiment Station, Georgia I n s t i t u t e  of 
Technology, Atlanta, Georgia, June 15, 1963, p. 33 f f .  
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unfortunately,  w a s  unknown. 

l a y e r  of carbon p a r t i c l e s  and its emissivity w a s  assumed t o  be 0.95. 

t h i s  assumption a d i s t r ibu t ion  of t he  radiant heat flux along t h e  quartz con- 

d u i t  w a s  calculated f o r  given conditions of free stream a i r  ve loc i ty .  

in tegra t ion  of t h i s  curve yielded an average rad ia t ion  flux of 7415 Btu/hr f t  . 
Although t h i s  number is  apparently ser ious ly  i n  e r ror ,  the technique has the 

value of ind ica t ing  the p r o f i l e  of t h e  rad ia t ion  flux. That is, it revealed 

t h a t  there were no sharp d iscont inui t ies  a t  the ends and t h a t  t h e  d i s t r ibu t ion  

of energy was approximately f l a t  f o r  most of t h e  length of t h e  quartz conduit. 

The surface of t h e  bead w a s  coated with a t h i n  

With 

Graphical 

2 

B. Energy Balance Procedures 

1. Energy Balance a t  the  Entrance of t he  Calorimeter 

The energy absorbed by aerosols w a s  determined by calor imetr ic  measure- 

ments. Two energy balances were employed. The first one w a s  made between the  

reference state and t h e  thermal conditions a t  the entrance of the  calorimeter.  

Special  methods were required t o  evaluate the  temperatures. 

The temperature of t h e  aerosol  itself w a s  measured by a thermocouple in-  

s t a l l e d  6.5 inches from the  entrance of t h e  Calorimeter. 

with t h i s  thermocouple were not successful because of rad ia t ion  reaching irlto 

the calorimeter.  For these experiments, therefore ,  the  thermocouple w a s  pro- 

Previous experiments 

tec ted  from radia t ion  by means of a sh ie ld  i n s t a l l e d  a t  the end of the quartz 

conduit. 

e te r  w a s  calculated by assuming a l i nea r  temperature d i s t r i b u t i o n  f o r  the  aerosol  

along the  calorimeter.  

measured 6.5 inches downstream f r o m  the entrance of t h e  calorimeter and t h e  

simultaneously determined temperature a t  the  e x i t .  

The temperature of the aerosol stream a t  the  entrance of the calorim- 

For each t e s t  t h i s  number was calculated from temperatures 

The energy balances were set up by taking the reference temperature as that 

6 



of the  stream a t  the exit  of t h e  aerosol generator and w a s  e f f ec t ive ly  t h e  same 

as the temperature of t h e  aerosol  a t  the entrance of the  furnace. 

temperature was assumed constant f o r  the purpose of es tabl ishing energy balances. 

Actually, var ia t ions  i n  t h i s  temperature were present but never exceeded one o r  

two degrees over a period of several  hours and not more than a f e w  ten ths  of a 

degree over the duration of a tes t .  

The base 

With the  temperatures described and a knowledge of t h e  individual com- 

ponents of t h e  aerosol,  energy balances over t he  entrance of t he  calorimeter 

could be established. 

tha t  of t h e  a i r  w i t h  no pa r t i c l e s  flowing is  

The enthalpy change of t he  a i r  i n  t h e  stream r e l a t i v e  t o  

AfIu = (4 - $, o A  - (HY - HE)A 

where the subscr ipts  {A,o,l) and superscr ipts  (a,l) ind ica te  the following : 

A = a property of the air, 

o = the property evaluated a t  the  furnace i n l e t ,  

1 = t he  property evaluated a t  the  calorimeter i n l e t ;  

o = evaluation when no p a r t i c l e s  a r e  flowing, 

1 = evaluation when pa r t i c l e s  a r e  flowing. 

With t h e  assumption of a constant base temperature, Equation (1) s impl i f ies  t o :  

which i n  terms of temperatures i s  

- 
where 

a t u r e  l eve l s  under consideration, and 

CA is the average heat capacity of the  a i r  stream between the  temper- 

WA is  the mass flow r a t e  of air .  

7 



The enthalpy change of the  p a r t i c l e  stream i s  given by the  r e l a t i o n  

mlp = <p - <p 

which m y  be expressed a s :  

where t he  subscr ipt  p ind ica tes  a property of the  p a r t i c l e s ,  and 7 i s  the  

average hea t  capacity of the  p a r t i c l e  material between t h e  temperature leve ls  

under consideration, and W i s  the powder flow ra t e .  

P 

P 
The t o t a l  enthalpy gain due t o  the  absorption of energy by p a r t i c l e s  in  t h e  

radiant  f i e l d  is, f i n a l l y ,  the  sum 

2. Ehergy Balance a t  t he  &it of the Calorimeter 

A thermocouple was in s t a l l ed  a t  t he  end of the calorimeter t o  sense 

t h e  temperature of t he  aerosol  stream as it l e f t  t h e  calorimeter.  

thermocouple indicated the  temperature r i s e  of the cooling a i r  a s  it passed 

through t h e  calorimeter.  

t h e  flow r a t e s  of t h e  streams involved, a second energy balance was establ ished 

t h a t  included the  heat exchange processes i n  the  calorimeter.  

balance i s  t h e  sum of the  heat e f fec ts  i n  the  a i r  port ion of t he  aerosol ,  t h e  

p a r t i c l e ,  and the  calorimeter coolant. 

A difference 

From a knowledge of these temperature readings and 

The t o t a l  

For t he  a i r  composing the  aerosol, t h e  enthalpy change r e l a t i v e  t o  tha t  

of the  a i r  when no p a r t i c l e s  a r e  flowing is  given by I 

8 



where t h e  subscr ipt  3 indicates  the property is  evaluated a t  

exit. 

Since t h e  base temperature is  constant, Equation (7) ret 

1 5A = H - Ho 
3A 3A 

The enthalpy change of t he  p a r t i c l e  stream is 

m3P = " - S p  3P 

which can be expressed as 

The enthalpy change of t he  cooling a i r  stream is 

where, 

t h e  calorimeter 

uces t o :  

(8 1 

The notation, A(mc), indica tes  the difference i n  temperature rise of the 

calor imeter  coolant measured w i t h  and without p a r t i c l e s  i n  the aerosol  stream. 

9 



The t o t a l  enthalpy gain due t o  the  flow of p a r t i c l e s  through t h e  radiat ion 

f i e l d  is the sum, 

%otal + 9 P +  @% 

C. P a r t i c l e  Materials and Size Measurements 

P a r t i c l e  clouds of powdered zinc i n  one s i z e  range and of fe r rous  s u l f i d e  

i n  th ree  s i z e  ranges were studied and reported on previously. One addi t iona l  

fe r rous  su l f ide  powder of another s i z e  range has been employed, and o ther  

inves t iga t ions  have included alumina and cupric  oxide powders. 

Measurements were made of t he  minimum, maximum,  and the  mean p a r t i c l e  

dimensions of each powder. The r e su l t s  are presented i n  Figures 1 through 5. 

The d i s t r ibu t ions  given are complete except f o r  the maximum dimension f o r  t he  

20 t o  30 micron screen s i z e  fe r rous  sulf ide and the 44 t o  53 micron cupric  

oxide. S t a t i s t i c a l  treatment of t h e  data has not yet been completed f o r  these. 

The r e s u l t s  are presented here t o  show t h e  r e l a t i v e  s i z e s  of t he  materials and 

t h e i r  length-to-diameter charac te r i s t ics .  The infomat ion  w i l l  be u t i l i z e d  i n  

fu tu re  analyses when surface properties,  mass mean diameters, and o ther  param- 

eters are developed. 

The mean d i s t r ibu t ions  were obtained so t h a t  t h e  proper t ies  of t h e  powders 
..- 

could be t r e a t e d  on t h e  assumption that the p a f t i c l e s  w e r e  spheres w i t h  diam- 

eters equivalent t o  the mean. The maximum and the  minimum dimensions were 

determined so t h a t ,  i n  o ther  calculations,  t h e  p a r t i c l e s  could be t r e a t e d  as 

cylinders and the  e f f e c t  of p a r t i c l e  i r r e g u l a r i t y  could be taken i n t o  account. 

The f i n a l  r e s u l t s  i n  each case w i l l  be s i g n i f i c a n t l y  d i f f e ren t  because of the  

differences i n  the surface and mass functions of the  two geometric shapes. 

10 
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3. Heat Transfer Eata 

Accurate energy balances giving the heat gained by the p a r t i c l e  clouds 

require  t h a t  the  incoming streams not be preheated by contact with the  conduit 

walls. 

base temperature w h i l e  i n  the entrance sect ion.  

cooling t h e  en%rance sec t ion  so as t o  keep i ts  w a l l  temperature constant.  

water was employed as the  coolant i n  previously reported experiments. 

f o r  one experiment, the  t ap  water temperature was s u f f i c i e n t l y  c lose  t o  the 

a i r  temperature t o  give s a t i s f a c t o r y  r e su l t s .  

fe r rous  su l f ide ,  the water w a s  a t  a sub-normal temperature and the temperature 

of the aerosol  a t  t he  entrance of the  furnace had t o  be calculated.  *The numbers 

obtained appear reasonably reliable when compared w i t h  t he  temperature of the 

stream a t  the entrance of t h e  furnace as determined experimentally(2). 

one tes t  t h e  temperature of the stream a t  the entrance of the  furnace w a s  used 

as the base temperature f o r  t he  energy balances. 

t h i s  complication t h e  apparatus was modified t o  use a i r  i n  the  precooler.  

a i r  from the precooler w a s  a l s o  employed t o  cool the calorimeter.  

possible  s ince the temperature rise of t h e  cooling a i r  on passing through t h e p r e -  

cooler  was negl ig ib ly  small. After t h i s  change the temperature of the  aerosol  

a t  the entrance of t h e  furnace could always be assumed equal t o  i t s  temperature 

measured a t  the  e x i t  of t h e  deagglomeratort 

It is equally important t h a t  the system not be cooled bklow the intended 

These conditions were m e t  by 

Tap 

Ekcept 

For t he  tests using 30 t o  44p 

For 

To avoid the recurrence of 

The 

This was 

Table I presents  data  f o r  t he  30 t o  44p ferrous su l f ide .  It is  t o  be 

noted t h a t  these data do not agree w i t h  r e s u l t s  previously reported. 

explanation is  t h a t  an a i r  leak i n  the system caused the  concentration of powder 

i n  t h e  earlier tests t o  be higher  than  reported thus yielding a high rad ia t ion  

(') 

The only 

McAlister, A.,  e t  a l . ,  Op c i t ,  p. 48. 
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absorptance. 

A t  t h i s  point i n  t h e  experimental work, a radiat ion sh ie ld  w a s  developed 

which could be i n s t a l l e d  a t  the  e x i t  of the aerosol  stream f r o m  t he  furnace, 

thereby preventing appreciable radiat ion from penetrat ing i n t o  t h e  calorimeter.  

For subsequent experiments, t he  temperature of the aerosol  or  a i r  stream w a s  

measured by a thermocouple located a x i a l l y  6.5 in .  from the entrance of the 

calorimeter.  Hence, by assuming a l i nea r  temperature d i s t r ibu t ion  of t h e  

aerosol  stream through the calorimeter, it w a s  possible  t o  ca l cu la t e  t h e  

a e r o s o l ' s  temperature a t  the entrance of t h e  calorimeter.  

w a s  then establ ished f o r  t he  entrance of t he  calorimeter as w e l l  as the  e x i t .  

An energy balance 

Ekperiments were then performed with 20 t o  3Op micron fe r rous  su l f ide .  

S o m e  were made w i t h  t h e  sh ie ld  removed and some with t h e  sh i e ld  i n  place t o  

de t ec t  any adverse e f f e c t s  of t h e  modified system. 

Table T I  were obtained without t h e  sh ie ld  i n  place and the data i n  Tables I11 

and 111-A w e r e  obtained with it. 

agreement w i t h  those of Table I1 as we l l  as those f r o m  previous experiments. 

Figure 6 summarizes the data obtained f o r  t he  fesrous su l f ide .  It represents  

the rad ia t ion  absorption as a function of concentration f o r  severa l  p a r t i c l e  

s i z e  d i s t r ibu t ions .  

The data  presented i n  

Resul t s  from the modified system were i n  good 

Two experiments w e r e  next made using 53 t o  88p and 44 t o  53p alumina 

p a r t i c l e s .  Since t h i s  material is pa r t ly  t ransparent ,  very small rad ia t ion  

absorptances were obtained. 

acceptable l i m i t s  of uncertainty,  they are not presented. 

Because some of the da ta  appear t o  be  outs ide 

F ina l ly ,  cupric oxide was selected as a tes t  material. Four s i z e  d i s -  

t r i b u t i o n s  were prepared by methods previously reported.  

present  the  data  obtained on the 53 t o  8811, 44 t o  53p,and 30 t o  4411 cupric oxide 

Tables N through V I  

18 
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Figure 6. Radiant Energy Absorption by Ferrous Sulfide 
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aerosols, respectively,  while Figure 7 presents t he  r e su l t s  graphically.  An 

addi t iona l  experiment w a s  car r ied  out using 20 t o  3Op cupric oxide, but t he  data  

obtained do not cor re la te  w e l l  with previous tests using cupric oxide. The con- 

cent ra t ion  of t h i s  powder may not have been measured correct ly .  

E. Thermal Absoru-tion Efficiencv 

1. Estimates Assuming Isotropic  Radiation 

If t h e  radiant f l u x  within a n  aerosol  can be determined and if t h e  

p a r t i c l e  surface area and the  appropriate view fac to r s  are known, t h e  thermal 

absorption e f f ic iency  of t h e  p a r t i c l e  cloud may be calculated exactly.  For 

iz i t ia l  estimates,  however, it w a s  assumed t h a t  t he  radiat ion w a s  i sotropic ,  and 

the  par t ic le - to-wal l  view fac to r s  were considered uni ty .  These assumptions 

were j u s t i f i e d  f o r  estimations only, and were made t o  a id  i n i t i a l  in te rpre ta -  

t i a n s  of t h e  experimental data.  Pa r t i c l e  surface areas w e r e  determined by 

th ree  methods : microscopic measurements, standard BET nitrogen adsorption, and 

a modified procedure t o  be explained l a t e r .  

Tne surface area data are presented i n  TableVIT,and the  calculated 

I abso rp t iv i t i e s  based on these  values and the  assumptions involved a r e  given i n  

Table V I I I .  Aashown, the  absorptance efficiency is  inversely proportional t o  

the  surface area measurement; it ranges from very small values t o  g rea t e r  than 

uni ty .  It w a s  hoped t h a t  the  estimated values might ind ica te  the  proper method 

I f o r  determining surface area. Instead, t h e  problen: w a s  complicated s ince  plau- 

I s ible arguments could be given t o  support any pa r t i cu la r  method. Absorpt ivi t ies  

I 
based on Sm, t he  microscopic measurements, were la rge  and var iable .  Such 

var ia t ions  i n  absorpt ivi ty ,  however, would not be expected s ince quantum e f fec t s ,  

which produce t h e  changes, should not a r i s e  f o r  such large p a r t i c l e s .  The 

35 



8 

7 

6 

5 

4 

3 

2 

1 

0 
0.00 0.01 

f 7L 

! 

0.02 0.03 

P a r t i c l e  Concentration, Volume pe r  cent  of aerosol  

Figure 7. Radiant Energy Absorption by Cupric Oxide 
Pa r t i c l e  Clouds. The points  are averages 
of from 8 t o  24 tes t  r e su l t s .  



TABLE VI1 

SURFACE AREAS FOR POWDERED 
MATERIALS DETERMINED BY DIFFERENT METHODS 

kt e r i a l  

Fe S 

FeS 

Fe S 

Fe S 

CUO 

CUO 

CLlO 

Screen Size 
msignat  ion 

(P) 

53 -88 

44-53 

30-44 

20-30 

53 -88 

64-53 

30-44 

2 Surface Areas, m /gm 

swa 

0.13 

0.14 

0.23 

0.24 

0.10 

0.20 

0.21 

0.04 

0.05 

0.08 

0.08 

-0.07 

0.00 

0.02 

0.016 

0.02 

0.03 

0.05 

0.015 

0.02 

0.04 

a BET nitrogen adsorption surface area 

Adjusted BET resu l t s  (see t e x t )  

3arface area from p a r t i c l e  measurement. c 
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TABLE VI11 

THERMAL ABSORPTION EFFICIENCY EASED 
ON DIFFERENT ME;THODS OF SUIiFACE MEASUREMENT 

Material 

Screen 
Size 

Designation 

Thermal Absorption Efficiency Based 
On Surface Areas Indicated by 

sm 

FeS 53 -88 0.14 0.5 1.18 

Fe S 44-53 0.18 0.5 0.86 

FeS 30-44 0.17 0.5 0.60 

FeS 20-30 0.11 0.3 0.49 

ChO 53-88 -.08 - 0.53 

ChO 44-53 0.05 0.0 0.54 

CUC 30 -44 0.06 0.7 0.33 
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BET adsorption surface areas, Sw, on the o ther  hand, yielded abso rp t iv i t i e s  much 

too small. If it is  considered t h a t  polished metal surfaces  have abso rp t iv i t i e s  

around 0.05 t o  0.07 and, with 6ull f in i shes ,  have values as high as 0.4, then, 

fe r rous  s u l f i d e  and cupric  cxide, both being non-conductors, should, according 

t o  electromagnetic theory, have larger abso rp t iv i t i e s .  I3cke1-t'~) gives  0.8 as 

t h e  abso rp t iv i ty  f o r  low temperature radiat ion f o r  cupric,  oxide. 

Although f ac to r s  o ther  than the  p a r t i c l e  surface area can s i g n i f i c a n t l y  

influence the  r e su l t s ,  it w a s  suspected t h a t  the proper value had not been ob- 

tained, and tha t  t h e  cor rec t  one l a y  between Sw and Sm. Normally, r e s u l t s  

from microscopic measurements are smaller than obtained by o the r  methods. This 

is  because t h e  p a r t i c l e s  a r e  assumed t o  have a regular  geometry and the  surface 

ca lcu la ted  does not consider t h e  i r r e g u l a r i t i e s  i n  p a r t i c l e  shape. BFT r e s u l t s  

can be too l a rge  s ince  t h e  t o t a l  surface i s  measured and some of t h i s  surface 

is  in t e rna l ,  as i n  pores, surface cracks, and crystallographic imperfections. 

%ne area associated w i t h  these  in t e rna l  i r r e g u l a r i t i e s  can be s tudied  by an 

extended BETT ana lys i s  generally referred t o  as a pore volume determination. 

A number of experiments were performed t o  determine i f  the technique would be 

use fu l  i n  t h i s  study. 

In  a gas adsorption surface area measurement, a determination is made of 

t h e  number of molecules of a gas, usually nitrogen, required t o  cover a sur face  

w i t h  a monolayer of molecules. The t o t a l  surface is evaluated assuming the  

area covered by a s ing le  nitrogen molecule is known. By extending the adsorption 

procedure beyond the  mono-molecular coverage, a t t a i n i n g  sa tura t ion ,  and then 

desorbing t o  the  monolayer state again, t h e  port.ion of the  sur face  tha t  is  

(3) E. R. G. Eckert and R. M. Drzke, Jr., Heat and YBSS Transfer, McGraw-Hill 
Book Co., Inc., New York, 1959, p.377. 
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i n t e rna l  can be estimated. The d e t a i l s  of t he  procedure a r e  reviewed else- 

Column four  of Table VI11 gives surface areas adjusted f o r  porosity,  i . e . ,  

( S w  - Sp) values which represent t h e  surface surrounding the p a r t i c l e s .  The 

results appear i n  t he  order they were obtained. As shown, the earlier r e s u l t s  

appear t o  y ie ld  good values f o r  radiat ion absorptance e f f i c i enc ie s .  However, 

l a te r  measurements, p r inc ipa l ly  those f o r  cupric oxide, are not encouraging, 

s ince  Sp is  as la rge  as Sw and i n  some cases l a rge r .  These u n r e a l i s t i c  

r e s u l t s  may be due t o  the  presence of moisture i n  the adsorbate used. 

rnoisture would condense i n  the  sample holder a t  l i qu id  nitrogen temperature and 

This 

hence would not come off  upon desorption. 

pore surfaces  obtained. 

This explains the  unreasonably high 

The problem i s  s t i l l  being invest igated and considera- 

t i o n  i s  being given t o  a repeating of the experiments after s teps  have been 

taken t o  avoid contamination of the  adsorbate. Should the  f i n a l  BET r e s u l t s  

prove u n r e a l i s t i c ,  it w i l l  be necessary t o  use s t a t i s t i c a l  r e s u l t s  from the  

microscopic examinations. 

2. Anisotropic Radiation 

Since there are other  f ac to r s  which can a f f e c t  the  absorption ef- 

f ic iency  of a p a r t i c l e  cloud, t h e  results of Table IX must be evaluated fu r the r .  

Observations of experiments w h i l e  i n  progress indicated t h a t  the p a r t i c l e  clouds 

had very l a rge  o p t i c a l  thicknesses.  Hence it appeared tha t  a t tenuat ion  of 

radiant  energy, as a first approxiration, might be neglected. A s  the next 

(4) C. O r r ,  Jr., and J. M. EallaValle, Fine P a r t i c l e  Measurement, Size, Surface, 
and Pore Volume, The Macmillan Co., New York, 1959, p .  257 f .  

(5) P. H. Einmett [ ed i to r ] ,  Catalysis,  Vol. 11, Fundamental Pr inc ip les  (Par t  Z), 
New York, 1955, p. 105 f .  
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step, a development i s  being pursued which considers radiant energy at tenuat ion 

but  s t i l l  omits s ca t t e r ing  effects .  

t he  basic  re la t ionship describing t h e  exchange of radiant  energy between two 

elemental areas  separated by a given distance which is a function of the  posi- 

t i o n  of a p a r t i c l e  within the  radiation f i e l d  and the  point a t  which rad ia t ion  

en ters  the p a r t i c l e  cloud. 

of t he  in tegra t ion  process have been worked out but  a f i n a l  solut ion has not 

been obtained. 

The approach being employed is t o  in tegra te  

The development i s  p a r t i a l l y  complete. The mechanics 

Numerical r e s u l t s  accounting f o r  attenuation should be exact if there  is  

no sca t t e r ing  of radiant  energy. 

made t o  approximate the e f f ec t s  of scat tered rad ia t ion  by changing the  attenua- 

t ion  function. 

It is an t ic ipa ted  tha t  amendments can be 

Specif ical ly ,  i f  radiation can be considered t o  be represented 

by 

-kx I = I k e  
2 

where I and I1 are the  i n t e n s i t i e s  of radiat ion a t  posi t ions two and one 2 

along t h e  straight l i n e  x and k i s  the at tenuat ion constant, then 

where sca t t e r ing  i s  s ign i f i can t .  k is l a r g e r  than k because each p a r t i c l e ,  

by v i r t u e  of sca t te r ing ,  adds t o  the  energy proceeding i n  the  x direct ion.  If 

1 

a sca t t e r ing  function is  assumed for a given pa r t i c l e ,  

i n  terms of k , however. 

kl can be evaluated 
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Future e f f o r t s  w i l l  be concentrated on deveLoping methods f o r  ca lcu la t ing  

t h e  amount of radiant  energy t h a t  a p a r t i c l e  cIoud should absorb i n  t h e  ex- 

perimental system. !These calculat ions w i l l  be made first t o  account f o r  radiant  

energy a t tenuat ion  within t h e  cloud and second t o  estimate the e f f e c t s  of radia- 

t i o n  sca t t e r ing  by individual  particles. It w i l l  then be  possible  t o  re-examine 

t h e  various methods of surface area determination and evaluate t h e  one bes t  

su i t ed  f o r  t h i s  problem. 

The col lec t ion  of addi t iona l  experimental data  w i l l  be resumed when the  

t h e o r e t i c a l  developments permit evaluating t h e  s ign i f icance  of t h e  da ta  a l ready 

co l lec ted  . 
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